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Photographic and Videographic Observations
for Determining and Mapping the Response of
Cotton to Soil Salinity

C. L. Wiegand,* J. D. Rhoades,?  D. E. Escobar,*  and J. H. Everitt*

Better ways are needed to assess the extent and severity
of soil salinity in fields in terms of economic impact on
crop production and effectiveness of reclamation efforts.
Procedures to help meet these needs were developed from
soil salinity, plant height and boll counts, and digitized
color infrared aerial photography and videography ac-
quired during midboll set development stage for four
salt-affected cotton (Gossypium hirsutum, L.) fields in
the San Joaquin Valley of California. Unsupervised classi-
jication procedures were used to produce seven-category
spectral maps by field. Regression equations were devel-
oped from salinity measurements in the surface 30 cm
(EC1) at 100-200 sample sites per field and the photogra-
phy and videography digital counts at those same sites.
The equations were used to estimate the salinity of each
of the approximately 100,000 pixels per field, and the
salinity categories corresponding to the spectral ones
were mapped. The spectral classification maps and the
estimated salinity maps corresponded well. Boll counts,
made at about 20 sites perjield, were converted to lint
yield and regressed on NDVl from both the photography
and videography; the correlation coefficient (r) was 0.72
for video and 0.73 for the photographic data. Lint yields
decreased by 43 f 10 kg ha-’  per dS mm1 increase in
ECl, or $52 f 12 ha-’  at current market prices. Our
results illustrate very practical ways to combine image
analysis capability, spectral observations, and ground
truth to map and quantify the severity of soil salinity
and its effects on crops.
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INTRODUCTION

Soils are termed saline or salt-affected when the con-
centration of salts in the root zone exceeds 4 dS m-l
(Richards, 1954). Such soils comprise 19% of the 2.8
billion hectares of arable land worldwide (Szabolcs,
1989). Saline soils occur naturally in arid and semiarid
climates from weathering of indigenous minerals (Tanji,
1990) but are more important economically where irri-
gation is practiced to produce crops (Carter, 1975).
Nonsaline irrigated soils can become saline in time when
leaching is insufficient to remove salts applied in the
irrigation water, or drainage is insufficient to prevent a
saline water table from rising within about 1.5 m of
the soil surface. Downstream irrigation projects are
jeopardized because return flow of drain water to river
systems invariably contains more salt than when di-
verted.

Information on the extent and severity of soil salinity
is needed to engineer water delivery and drainage im-
provements. Once reclamation efforts are underway,
methods are needed to monitor the effectiveness of
reclamation or amelioration. Aerial photography (Myers
et al., 1966) and Apollo 9 (Wiegand et al., 1971) and
Skylab (Everitt et al., 1977) 1:3,000,000-scale  space
photography as well as Landsat  multispectral scanner
(MSS) 1:250,000-scale  imagery (Sharma and Bhargava,
1988) have been used to distinguish saline from nonsa-
line soils and vegetation. Everitt et al. (1988) used narrow-
band videography to detect and estimate the aerial ex-
tent of salt-affected soil in southern Texas. Wiegand et
al. (1991; 1992) related three bands of video and the
three HRV scanner bands of the French polar-orbiting
satellite SPOT-l to lint yield and percent ground cover
of cotton in a single I5-ha salt-affected field; yield and
plant cover were estimated equally well from vegetation
indices (Kauth and Thomas, 1976; Richardson and Wie-
gand, 1977; Tucker, 1979) from both systems.
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Table 1. Size and Designations of Fields, Sampling Pattern and Number of Samples, and Range, Mean, and Standard
Deviation of Electrical Conductivity of Saturation Extracts (EC1) from the Surface 30 cm of Soil for the Fields Studied

Field Size
(1.D.) (ha)
2c 13.7
3c 12.5
9A 16.1
9E 12.4

Sample
Transects

(No.)
13
14
13

6

Transect
Spacing

( m )
23
24
31
50

Sample
Spacing Within

Transects
( m )

15 or 16
13 to 6
13
17

Samples
Taken
(No.)
198
149
169
102

EC1

Mean
R a n g e  (dS m-‘)

o-17 2.25
O-25 3.07
o-17 4.29
O-27 7.65

S.D.

3.3
4.0
3.3
5.3

The widely used VI include the greenness vegeta-
tion index (GVI) (Kauth and Thomas, 1976; Jackson,
1983) that is calculated from observations in three or
more bands, and the normalized difference vegetation
index (NDVI) (Tucker, 1979) that is calculated from
observations in a visible red (Red, 600-700 nm) and a
near-infrared (NIR, 750-1350 nm) band.

Wiegand and Richardson (1984; 1987; 1990) devel-
oped spectral components analysis (SCA) to help inter-
pret vegetation indices in terms of crop growth and
yield and the underlying canopy processes such as light
interception and evapotranspiration. Briefly, principles
implicit in SCA include: 1) Plants integrate the soil
and aerial environments experienced and express their
responses to stresses through the canopies achieved; 2)
high yields obtain only when growing conditions permit
canopies to develop that fully intercept sunlight during
the reproductive stage of development; (3) commercially
successful producers use recommended cultivars, plant-
ing rates and configurations, fertilization, insect and
disease control and other practices that permit the
needed full canopies to develop; 4) vegetation indices,
such as NDVI, are measures of the photosynthetic size
(amount of photosynthetically active tissue) of the cano-
pies; and 5) stresses reduce yields proportional to the
reduction in photosynthetic size and duration I persis-
tence of the canopies during production of the salable
plant parts that constitute economic yield. Thus effect
of single or multiple stresses on economic yield can be
interpreted through spectral observations that capture
their effect on photosynthetic size of the canopies.

The SCA relations for crop response to soil salinity
are expressed by

Yield(NDV1)  = Yield(EC)  x EC(NDV1)  , (1)

where, for cotton, yield is lint yield (kg ha-l), EC is the
electrical conductivity (dS m-l) of water extracts from
soil samples taken from the root zone of the crop, and
NDVI is calculated from digital responses in NIR and
Red wavelengths. Axiomatically, for the Eq. (1) relation-
ships to be strong, the effects of soil salinity have to
dominate the other sources of variation (cultivars, soils,
carryover and current year’s tillage  and fertilization)
and the error in sampling. For sugarcane, Wiegand et

al. (1993) reported that stalk yields decreased 23.8 + 3.8
metric tons ha-’ per unit increase in EC and that stalk
yield related more closely to NDVI (r= 0.82) than to
EC (r = - 0.77).

In this study we report on soil salinity, plant height
and cover, and digitized color infrared photography
and multispectral narrowband videography observations
obtained from four cotton fields in the San Joaquin
Valley of California. The objectives were to a) determine
the interrelations among plant, soil salinity, and spectral
observations by field, b) jointly use those relationships
and image analysis techniques to map the severity and
spatial distribution of soil salinity in cropped fields, and
c) interpret results in terms of the economic costs of
salinity. Our hypotheses were that the spectral observa-
tions sense plant growth and yield responses to soil
salinity and can help map and quantify the extent and
severity of soil salinity in crop fields. Successful accom-
plishment of the objectives would provide illustrative
relations between spectral observations and soil salinity,
and demonstrate another way to determine the extent
and severity of soil salinity or, alternatively, to monitor
the progress of reclamation.

METHODS

Field Sampling

Four commercial fields of cotton (Gossypium hirsutum
L.) within a 39 km2  intensive study area in the San
Joaquin Valley of California (Lesch  et al., 1992) were
used. The field designations, transect spacing, sample
intervals along the transects, and salinity of the surface
30 cm of soil are summarized in Table 1. Sampling
strategy had been preplanned to provide at least 100
sample sites per field. Intervals between sample sites
were determined by pacing, after which coordinates
were determined ( + 0.1 m) with a Zeiss’ DME theodo-
lite system.

Soil samples were taken from the O-2 cm, O-30 cm,
and 30-60 cm depths at three positions within about

’ Trade names are included for the benefit of the reader and do
not imply endorsement of nor preference for the mentioned product
by the U.S. Department of Agriculture
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Table 2. Systems Used, Wavelengths of Each System,
and Nominal Pixel Width

System

Photography

Film
Response

Digitizing
Filters Videograph y

Wavelength Interval (nm)

Band

(Name)

750-900
600-700
500-600

610-730” 845-857’ Near-infrared
515-570” 644-656 Red
390-480” 543-552 Green

Pixel Width (m)

1.0-1.2 3.4

a Filters used on Eikonics camera to digitize the Kodak Aerochrome
infrared film 2443 positive transparencies.

’ A 0.5 neutral density filter was also used on an NIR-filtered camera.

0.5 m of each sample site, using a Lord tube, and
composited by depth. Electrical conductivity of the satu-
rated-soil extracts (EC,, dS m-l) was determined by the
procedures of Rhoades (1982). Electrical conductivities
were designated ECO, ECl, and EC2 for the O-2 cm,
O-30 cm, and 30-60 cm depths, respectively.

Plant height (PH, cm), percent bare area (PBARE),
and number of bolls were the plant observations re-
corded. Plant height and PBARE were determined and
recorded at all sites, but bolls mm2 was determined at
only 17-20 sites per field. If plants were absent at the
sample site, the height was recorded as zero and the
range in plant height within a 10 m x 10 m area sur-
rounding the sample site was measured and recorded.
PBARE was estimated visually as percentage of 10-m
lengths of row, surrounding the sample site, that was
devoid of plants. Thus PBARE recorded as zero meant
a full stand of plants was present. Bolls mm2 was ex-
panded to kg lint ha-l  based on 600 bolls per kg lint
(Wiegand et al., 1992). Plant and soil sampling required
1 day per field. All samples were acquired between 27
July and 5 August 1989.

Soils and agronomic practices differed among fields.
In field 9E the seed had been planted on top of the
bed in a shallow furrow between two miniridges toward
each edge of the bed. In the other fields, the miniridges
were absent. Row spacing in all fields was approximately
1 m.

Spectral Data

The photography and videography were acquired on
31 July 1989, with the systems mounted in a Aero
Commander aircraft. Twelve-inch format aerial photog-
raphy using Kodak Aerochrome infrared 2443 film was
acquired of the entire study area from I500 m above
ground level between approximately 1100 h and 1300 h
Pacific Standard Time. Aperture setting was F8 and

wide and 3.0 m long was used to form “plus sign”
markers in three corners of each field. These markers
were readily visible in the positive transparencies and
were used as reference positions. After acquisition of
the photography, videography of the test fields was
acquired from 3050 m using the system described by
Everitt et al. (1991). W avelength sensitivity intervals
are as given in Table 2.

Digital Data Extraction

The positive photographic transparencies were digitized
using an Eikonix model EC 78 /99 digital imaging cam-
era. Red, green, and blue dichroic filters from Optical
Coating Laboratories, Inc. were used successively on
the camera to produce B-bit digital count (DC) readings
that characterized the film’s NIR, red, and green wave-
length responses (Table 2). Pixel size ranged from 1.0 m2
to I.4 m2 ground area per digital value.

The videography images for each field in each wave-
length, as recorded on 400 horizontal line resolution
Super-VHS recorders, were “grabbed” with a Matrox
digitizing board and IMAGER software and saved. The
B-bit digital counts acquired by this procedure repre-
sented a ground area II-12 m2 in size.

The data extracted for each field were stored on
floppy disks. Then the data from all bands of all systems
were registered to the NIR band of the photography
for each field using PCI, Inc. EASI  /PACE image pro-
cessing software. The registered images were saved.
The coordinates of the sample sites, in meters, were
converted to pixel coordinates in the NIR photographic
image and overlaid on images for the other bands. The
digital counts for the sample sites for each data type
were then extracted.

Computation of Vegetation Indices

NDVI was calculated from digital counts as

NDVI = (NIR - RED) / (NIR + RED). (2)

GVI3 was obtained by the procedure of Jackson (1983)
for the three bands of each system except that the
greenness of the bare soil was subtracted from the
greenness calculated for each pixel (Wiegand et al.,
1991). The resulting GVI3 equations for photography
(p) and videography (u) were

GVIS, = - 0.179 Green - 0.397 Red
+ 0.900 NIR - 39.32,

GVI3, = - 0.076 Green - 0.383 Red
+ 0.920 NIR + 7.01
(fields 2C, 3C, and 9E),

GVI3vv = 0.015 Green - 0.224 Red
+ 0.975 NIR - 46.98
(field 9A).

(3a)

(3b)

(3c)

shutter speed was 1 I500 s. Red plastic sheeting 0.70 m A separate equation was needed for the videography
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Table 3. Correlations of PH and EC1 by Field with Spectral and Ground Truth Variables

Field

2 c  3 c  9A 9E

PH EC1 EC1 PH EC1 EC1
Variable (cm) (dS/m) (dS/m) (cm) (dS/m) ii) (dS/m)

A. Photography
VI

NIR - 0.46
Red - 0.69
Grn - 0.67
NDVI 0.77
GV13 0.61

NIR 0.54
Red - 0.68
Grn - 0.66
NDVI 0.70
GV13 0.69

EC0 - 0.62
EC1 - 0.72
EC2 - 0.72
PBARE - 0.73

0.58
0.77
0.75

- 0.73
- 0.57

- 0.46
0.72
0.71

- 0.69
- 0.68

0.80
1 .oo
0.91
0.81

- 0.33 0.10
- 0.57 0.47
- 0.55 0.45

-0.63 0.53
0.52 - 0.69

B. Videography
0.35 - 0.41

- 0.59 0.43
- 0.50 0.36

0.60 - 0.46
0.59 - 0.51

C. Ground Truth
- 0.45 0.68
- 0.65 1 .oo
- 0.56 0.75
- 0.68 0.74

a r for 0.05:p = 0.14 0.16
0 r for 0.01:p = 0.18 0.21

- 0.59
- 0.70
- 0.71

0.72
0.03

0.43 - 0.21
0.73 0.62
-0.69 0.64
0.74 - 0.56
0.61 - 0.40

- 0.33
- 0.64
- 0.35
- 0.72

0.50
0.60
0.62

- 0.57
- 0.03

0.47 No data
1 .oo - 0.82 1 .oo
0.62 - 0.78 0.82
0.55 - 0.85 0.75

- 0.38 0.46
- 0.90 0.78
- 0.90 0.78

0.90 - 0.68
0.89 - 0.70

0.80 - 0.61
- 0.88 0.71
- 0.83 0.69

0.85 - 0.67
0.86 - 0.67

0.14 0.20
0.18 0.25

data for field 9A because its reference soil plane differed
from that of the other fields.

Data Analysis

The above procedures resulted in two distinct data sets.
One set consisted of the plant, soil, and spectral data
for the sample sites, whereas the other was the digital
spectral data for all pixels in each field (the whole
population) in the photography and videography.

The sample site data were used to determine how
the observations interrelated, to examine them for outli-
ers, and to select a single depth of salinity measurements
to characterize the sample sites. Scatter plots of data
pairs and correlation matrices were the main procedures
used. Spectral and salinity observations for the sample
sites were also submitted to multiple regression analyses
to produce equations for estimating EC1 for every pixel
in each field.

Those equations by field for photography were:

2C: ECl, = 2.11-  0.031 NIR + 0.131 Red
- 0.073 Grn, R2 = 0.68, (4a)

3C: ECl, = 6.48 - 0.056 NIR + 0.038 Red
+ 0.016 Grn, R2 = 0.64, (4b)

9A:  ECl, = 2.64 - 0.020 NIR - 0.057 Red
+ 0.138 Grn, R2 = 0.39, (4c)

9E: ECl, = 5.49 - 0.027 NIR + 0.182 Red
- 0.094 Grn, R2 = 0.64. (4d)

The corresponding equations for the videography were

2C: ECl, = - 1.65 - 0.004 NIR + 0.033 Red

+ 0.029 Grn, R2 = 0.59, (5a)
3C: ECl, = 12.08 - 0.083 NIR + 0.010 Red

+ 0.020 Grn, R2 = 0.39, (5b)
9A: ECl, = - 1.71- 0.006 NIR + 0.032 Red

+ 0.068 Grn, R2 = 0.46, (5c)
9E: ECl, = 8.15 - 0.054 NIR + 0.092 Red

+ 0.026 Grn, R2 = 0.59. (5d)

The whole field data for the digitized photography
were analyzed in two ways. First, unsupervised classifi-
cations of the digital counts into eight spectral categories
were performed for each field with PCI, Inc. software.
One category was a small threshold group of outlier
pixels while seven were meaningful categories. The
procedure used migrating means and four-dimensional
histograms to develop and separate spectral classes and
generated mean and covariance matrices for each class
(or category). Individual pixels were classified by a maxi-
mum likelihood ratio criterion using the statistics gener-
ated for each class. The procedure provided a report
that gave the digital count means for each of the three
bands for each category and the number of inclusions
of individual and small “islands” of pixels in displays of
the classifications. The individual pixel classifications
were smoothed by the median DC of the 3 x 3 array
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I 1.5
a

1.0

0 5

o c

9E

r= -0.82

n=102

EC 1 (dS/m)

surrounding each pixel. These smoothed spectral classi-
fications were saved, the report was again generated,
and the results were color-coded, displayed, and photo-
graphed.

In the second analysis for each field, the multiple
regression equations from the sample sites [Eqs. (4) and
(5)] were used to estimate the mean salinity of each
spectral class from the mean digital count for each
classification category. The EC1 values at the midpoint
between categories were used to set the ranges in each
salinity class. Equation (4) was then used to assign
salinity classes to the approximately 100,000 photo-
graphic pixels in each field. These salinity classifications
were saved, and the number of pixels in each category
was listed. Color codes corresponding to those for the
unsupervised spectral classifications were assigned and
the images were displayed and photographed.

The results from the spectral and salinity classifica-
tions were submitted to a matrix coincidence analysis
using the PCI, Inc. subroutine, MAT. The procedure
sorted pixels by a cross-classification procedure into a
matrix where each element of the matrix corresponded
to overlapping categories from the spectral classification
(image 1) and the salinity classification (image 2). Pixels
along the diagonal of the matrix were cross-classified
into the same category in both images, while increasing
distance from the diagonal indicated increasing disparity
in category correspondence between images.

For publication purposes the spectral and electrical
conductivity image classifications were converted from
PCI, Inc. software raster files to the personal computer

Figure 1. Plant height (PH) vs. salinity of the sur-
face 30 cm of soil (ECl) for four fields (2C, 3C,
9A, 9E).

version of ARC / INFO vector files. The vector files were
used to create line drawing classification maps. The data
were smoothed twice with a 5 x 5 pixel array mode filter
before the figures were produced.

RESULTS

Plant, Soil and Spectral Interrelationships

Table 3 summarizes the correlations of both plant height
(PH) and electrical conductivity of the O-30 cm depth
(ECl)  by field with the spectral measurements (individ-
ual bands and the vegetation indices NDVI and GVI3)
and the other ground measurements, percent bare
(PBARE) and electrical conductivity of the O-2 cm
(ECO) and 30-60 cm (EC2) soil depths.

As shown in part C of Table 3, electrical conductiv-
ity of the surface 30 cm of the soil (ECl)  correlated
more closely with plant height than either EC0 or EC2.
Therefore, EC1 was chosen as the measurement of soil
salinity. Correlations of the natural logarithm of EC1
(In ECl) with the plant and spectral variables were
typically 0.02-0.08 lower than those for ECl. Therefore,
we discontinued investigating nonlinear salinity effects.

In Table 3, magnitudes of the coefficients were
similar, but opposite in signs for PH and EC1 versus
the spectral variables. For field 2C, EC1 related some-
what more closely to the photographic and videographic
spectral observations than did PH, but for fields 3C, 9A,
and 9E the reverse was true. The negative correlation
between the NIR band for photography and PH resulted
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from the inverse relation between plant vigor and digital
counts in the digitization of the photography. From
Table 3 results we decided to emphasize NDVI as the
spectral characterizer  of plant growth and soil salinity
conditions.

Scatter diagrams between plant height and EC1 are
displayed by field in Figure 1. Figure 2 displays the
relation between NDVI and EC1 by field for both
the photographic and videographic observations. The
correlation coefficients were slightly better for the pho-
tography than the videography. Summaries of the digital
count means and standard deviations for the bands of
all instruments by field (not shown) indicated that the
coefficient of variation (SD. x 100 /mean) for the NIR
band of the videography was less than 25% compared
with typically 60% for the other video bands and all
bands of the photography. When the NIR video band

Figure 2. Normalized difference vegetation index
(NDVI) vs. EC1 for each of four fields from photog-
raphy (upper set) and videography (lower set).

scene was displayed on a CRT, it produced an image
with low contrast. In retrospect, the 0.5 neutral density
filter may have overly dampened the response of the
sensor in the NIR video camera.

The correlation coefficients presented in Figures 1
and 2 and Table 3 are mostly far in excess of those
required for significance at the p = 0.01 level, but they
are low enough to indicate either errors in observations,
less than optimum sampling, or dependent variables
that were functions of additional independent variables.
Figure 2 indicates there were a few outliers in the
spectral observations but the correlation coefficients are
remarkably consistent between the completely indepen-
dent data sources, photography and videography. In
Figure 1, instances where the plant height (PH) is zero
at soil salinity less than 10 dS m -’ is due to skips in
the plant row right at the sample site. The experimental
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Figure 3. Spectral class number for each field in order
of increasing salinity versus mean salinity of each class.
Spectral class mean digital counts were inserted into
Eqs. (4a)-(4d) to estimate the mean salinity of each class.

data for each field were reanalyzed after deleting five
to seven sites where average plant height in the
10 m x 10 m area surrounding the sample sites was far
different from the zero reported at the sample site
and one to three spectral observations. The number of
observations deleted per field ranged from six to 10.
The correlations with PH improved by only 0.06-0.08
because the number of observations was large. The
correlations with the individual bands improved much
more than did the correlations with the vegetation indi-
ces. Because operational applications would have to
tolerate realistic inconsistencies, Figures 1 and 2 and
Table 3 are presented for the data sets with no sites
deleted. However, Eqs. (4) and (5) are based on the

data with six to 10 observations deleted out of 102 to
198 per field in order to improve the estimates of salinity
everywhere in the field from the sample site data.

Spectral and Salinity Classifications

Spectral and salinity classifications are reported for only
the full resolution photographic data since Figure 2
indicates that photographic and videographic observa-
tions should support very similar conclusions about
plant growth and salinity. Figure 3 displays the spectral
classes for each field versus mean estimated EC1 from
Eqs. (4a)-(4d).  The salinity ranges covered by the spec-
tral classes agreed well with the measured salinity ranges
in Figure 2. However, the wider the salinity range, the
higher the salinity of the least saline class in keeping
with a wider salinity interval per category to produce
the same number of spectral categories (eight) per field
as salinity increased. Although more spectral categories
could have been requested in the unsupervised classifi-
cations, we used eight uniformly across all fields to keep
the salinity categories to a practical number. The EC1
measurements at some sample sites and the appearance
of the plants in the CRT displays of the digitized photog-
raphy disagreed at some sample sites for field 9A, sup-
porting the lower coefficient of determination (R’) of 0.39
in Eq. (4c) for this field. The lower R2 values from the
videography [Eqs. (5a)-(5d)]  compared with Eqs. (4a)-
(4d) for photography indicate more reliable estimates
of EC1 from the digitized photography than the videog-
raphy in agreement with the PH results of Figure 1.

Table 4 summarizes the percentage of the area in
each field and the EC1 range for the unsupervised
spectral classifications of fields 2C, 3C, and 9E. The
boundary between adjacent salinity categories in Table
4 was obtained by averaging the mean EC1 for adjacent
salinity classes, as calculated by inserting the mean
digital count for each spectral band by class in Eqs.
(4a)-(4d).  Field 9A was not included in Table 4 because

Table 4. Percent of Field Area and EC1 Range in Each Spectral Class
for Fields 2C, 3C, and 9E

Class
Code

2 c  3 c  9E

Field EC1 Field EC1 Field EC1
Area Range Area Range Area Range

(%) (d S/m) (%) (d S/m) (%) (dS/m)
0” 2.3 3.5 - 1.2 _-
1 23.6 < 0.5 25.2 < 0.9 42.1 < 4.8
2 11.7 0.5-0.8 14.6 0.9-1.6 10.6 4.8-6.0
3 19.3 0.8-2.2 15.9 1.6-2.4 16.1 6.0-8.9
4 15.7 2.2-4.0 14.6 2.4-3.3 10.4 8.9-12.3
5 12.4 4.0-6.2 8.1 3.3-4.2 8.1 12.3-15.5
6 9.2 6.2-8.8 10.7 4.2-5.9 6.7 15.5-18.4
7 5.8 > 8.8 7.4 > 5.9 4.8 > 18.4
Total 100 100 100

’ Class 0 is composed of pixels that do not fit the pattern for any of the established classes.
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and predicted salinity (ECl)  map (lower) for field
2c.

of uncertainty in Eq. (3c). In Table 4, the zero or
threshold class consisted of pixels with erratic DC that
defied classification. Those pixels often occurred at field
edges. According to Table 4, 70.3% of the area in field
2C had EC1 < 4,78.4%  of the area in 3C had EC1 < 4.2,
and 42.1% of 9E had EC1 < 4.8.

Figure 4 displays the patterns of the spectral classi-
fication (SC) and the salinity classification (ECl),  based
on Eq. (4a), for field 2C in upper and lower parts of
the figure, respectively. In this field three drain lines,
revealed by the color contrast between the backfill and
surface soils, cross the field and sometimes interrupt
the patterns. The cross-hatch symbols corresponding
to increasing (or decreasing) salinity usually occurred

adjacent to each other as one proceeds from most saline
to least saline, or vice versa. The data for both parts of
Figure 4 were smoothed twice before the maps were
produced. The correspondence between the two maps
is evident and is especially good between the saline
areas along the top center of the maps. The least saline
area in both maps also forms a generally upper left to
lower right pattern.

The matrix analyses provided another way to exam-
ine the agreement / disagreement between the spectral
and salinity maps. That analysis for field 2C is summa-
rized in Table 5, where pixels along the diagonal were
classified into the same class by both procedures. For
this field 64.9% of the classifications coincided. The
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Table 5. Number of Pixels in Each Salinity Class and Percentage in Each Salinity Class Relative to Total Number
of Pixels in Each Spectral Class for Field 2C

No. Pixels

EC1 Spectral Class (% of Class)

Class 1 2 3 4 5 6 7

1 24,659
(76.2)

2 4,424
(13.7)

3 3,134

(9.8)
4 106

(0.0)

5 (0.:;

6 (0.0:

7 (O.O,O

32,348

4,567
(27.7)

8,681
(52.6)

3,239
(19.6)

(0.:;

(0.0;

(0.0;

(0.0;

5,260
(19.4)

3,644
(13.5)

13,775
(50.9)

4,175
(15.4)

148

(0.5)

(0.::

(0.0:

111

(0.5)

(0.::

5,129
(24.5)

11,663
(55.8)

3,758
(18.0)

188

(0.9)

(0.0;

5

(0.0)
178

(1.0)
4,857
(28.2)

9,148
(53.2)

2.990
(17.4)

(0.::

(0.;;

(0.0;
(0.:;
142

(1.1)
2,751
(21.3)

8,976
(69.4)

1,008

(7.8)

(0.0;
(0.0;
(0.;

(0.;

(0.6
329
(4.1)

7,671
(95.8)

16,504 27,060 20,919 17,203 12,931 8,005

matrix analysis showed that an additional 30.3% of the
pixels were confused with the adjacent higher or lower
class. This was encouraging since point samples of salin-
ity were interpolated to represent unsampled areas.
Variation also existed in the photographic digitizations
due to skips in the plant stands, changes in soil type
(color) across fields, and film exposure variations within
frames. For comparison, the percent coincidence was
37.8% for field 3C, 68.4% for field 9A, and 62.1% for
field 9E, while the percentage of pixels assigned to
adjacent categories was 26.4, 26.8, and 37.1%,  respec-
tively, for fields 3C, 9A and 9E. Field 9A had fewer
rapid changes in salinity and the coincidence of classifi-
cation was good, even though estimates of salinity for
the sample sites [Eq. (4c)] were imprecise.

Salinity-Yield Relations

The economic impact of salinity is through crop yield
reduction and the costs of reclamation. Thus, if a relation
were developed between yield and the vegetation indi-
ces, the crop yield categories could be mapped directly
and economic costs estimated. Therefore, cotton boll
counts taken at a fraction of the sampling sites were
used to develop yield (NDVI) and yield (ECl)  equations
after deleting the same data as deleted in developing
Eqs. (4) and (5) a few sites with outlier boll counts.
These relations are the left-side and first right-side terms
of Eq. (1) displayed in Figures 5 and 6, respectively,
for fields 2C, 3C, and 9E.

Field 9A had NDVI and EC1 values similar to the
other fields and was not included in Figures 5 and 6
because higher boll counts caused yields to be 300-400

kg ha- l higher for a given NDVI than for the other fields.
The simple product moment correlation coefficients (r),
which were 0.73 for the photographic and 0.72 for the
videographic data, indicate that a little over half the
variation in yield was accounted for by instantaneous
spectral observations midway in the fruiting (boll set)
period. In contrast, in Figure 6, the r of - 0.52 indicates
that soil salinity accounted for only 27% of the yield
variation. Consequently, use of the plants and particu-
larly their canopy development to integrate the salinity
effects was clearly superior to use of the salinity mea-
surements directly.

The equations in Figure 5 and statistics for them
show that there were 97 f 13 and 85 + 12 kg ha-’ in-
creases in yield for each 0.1 increase in NDVI, and
NDVI,, respectively. The standard error of the estimate
of yield was I92 kg ha-’ and 197 kg ha-’ for the
photographic and videographic data, respectively, or
18% of the yield range. Likewise, the equation on
Figure 6 estimates a 43 f 10 kg ha-’ decrease in lint
cotton yield for each unit increase in electrical conduc-
tivity of the surface 30 cm of the root zone. Since the
market price of cotton is currently about $1.20 per kg,
the losses (or gains) in income can be calculated for
given changes in NDVI or salinity-as from the average
values that were 3.2 dS m-l for ECl, 0.43 for NDVI,,
and 0.50 for NDVI,.

The inverse of the second right-hand side term of
Eq. (l), EC(NDVI), is shown for each of the four fields
in Figure 2. Salinity was expected to be the main source
of the variation in plant growth. Since the functions in
Figures 5 and 6 both estimate yield, they were set equal
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Figure 5. Estimates of cotton lint yield from NDVIp
(photography) and NDVIv  (videography) for fields 2C,
3C, and 9E.

to each other and solved for NDVI, (photography) in
terms of ECl. That expression was

NDVI, = 0.57 - 0.044(ECl). (6)

For EC1 values of 1 dS / m-‘,  10 dS /m-l and 20 dS /
m-l,  Eq. (6) predicts corresponding NDVI values of
0.53, 0.22, and - 0.31. For NDVI, values of - 0.30, 0.1,
and 0.5, the corresponding EC1 values are 19.7 dS/
m-i, 12.8 dS / m-l,  and 1.6 dS / m-l. Equation (6) repre-
sents the photography data displayed in Figure 2 rather
well.
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2C, 3C, and 9E.

DISCUSSION

The lasting value of this work is that it demonstrates
how ground measurements, aerial (or satellite) spectral
observations, and image analysis can be used jointly to
map cropped fields for the extent or severity of salinity.
Unsupervised spectral classification provides an unbi-
ased method of determining spectrally distinctive cate-
gories of response to salinity. Then the multiple regres-
sion equations developed from the salinity and spectral
data at sample sites defines the salinity of the spectral
categories. Because the spectral data, illustrated herein
with photography and videography, contain the whole
population of the field, salinity maps can be produced
of the fields.

If geographic information systems are in place, land
uses not of interest as well as roadways, turnrows, canals,
drains, borrow ditches, farmsteads, and other non-
cropped areas can be masked out of the spectral data.
Then, if plant and soil salinity have been measured at
representative sites, the procedure could be applied to
several square kilometers of the landscape at once. In
this study we used the fields as replications of the
procedure. They were separated geographically within
the 39 km2 study area and were subjected to differences
in soils and management practices, as well as differences
in distribution of salinity with depth in the soil profiles.

The data for the three fields could have been pooled
and analyzed as one data set. However, our mind set at
the time the work was done was that five to seven
salinity intervals are optimal and meaningful. Within
this criterion, our experience for cotton is that dS m-l
ranges of approximately <4, 4-8, 8-12, 12-16, 16-20,



222 Wiegand et al.

and >20  are appropriate. Therefore, we used eight-
category classifications for all fields which resulted in a
small threshold class and seven useable  categories (Ta-
ble 4). In retrospect, a 16-category or 32-category unsu-
pervised spectral classification of the pooled data for
the three fields could have been done, but that number
of salinity categories is unnecessary and difficult to
interpret.

Equation (1) the spectral components identity ap-
plicable to plant response to soil salinity, guides the
user to the important relationships: yield as functions
of vegetation indices and soil salinity, and, for predictive
purposes, soil salinity as a function of vegetation indices.
Once developed, these relationships provide the eco-
nomic estimates to justify reclamation efforts, and then
a way to monitor progress of reclamation. If spectral-
yield relations have been developed, then yield maps
useful for prescription farming or for depicting yield
losses can also be produced.

The yield relationships are climate dependent (Wie-
gand and Richardson, 1984; 1990) and are also depen-
dent on the time of collection of the boll counts for
estimating yield. In this San Joaquin Valley of California
study, the boll counts were made at the end of July or
about midway through the boll set period. In a south
Texas study (Wiegand et al., 1992) boll counts and
videography taken after bolls had begun to open gave
the equation

Yield = 246 + 1572 (NDVI,), n = 35 r = 0.78, (7)

where lint yield is in the same units as in this study (kg
ha-‘). This equation has about the same intercept but
a larger slope than the equation for videography in
Figure 5.

The variation among fields in some responses was
a concern in this study. All the fields gave similar re-
sponses in NDVI for both the photography and videog-
raphy. However, field 9A had 300-400 kg ha-’ higher
yields and in field 9E the plants grew taller at the higher
salinities (Fig. 1) than in the other fields. We do not
know why. Variations in boll counts were almost cer-
tainly vulnerable to irregularities in stand among l-m-
long row segments. Superimposed on those variations
were others associated with variable management
among fields and experimental sampling error. Conse-
quently, the reader should not dwell on them (“throw
the baby out with the bath water”), but rather the ideas
(the “brain children”) of the study.

CONCLUDING REMARKS

In this study there were moderate correlations among
spectral observations (individual bands and vegetation
indices) for two systems, the plant observations height

and (l-cover), and the soil salinity measurements. We
have also demonstrated that unsupervised spectral clas-
sifications identify the plant growth categories associ-
ated with soil salinity, and that spectral data for sites
sampled for salinity can be used to estimate the salinity
of all pixels in the field. Reports generated from the
spectral and salinity classifications provide estimates of
the percent of the field in each salinity category, and
the classifications can be mapped. These information
forms are very practical for managing individual fields
and monitoring salinity changes in them. The relation-
ships expressed by Eq. (1) and illustrated by the equa-
tions in Figures 5 and 6 can be used to estimate eco-
nomic losses from salinity (or the value of reclamation).

We have many colleagues to thank: Rene Davis for acquisition
of the photography and videography; Scott Lesch for clarifying
sampling procedures, preparing the sample site data sets, and
performing the photographic film digitizations; Ricardo Vil-
larreal for conducting the spectral and salinity classifications
and matrix analyses; Arthur J. Richardson for deriving equa-
tions for locating sample sites and for matrix analysis interpreta-
tion; Romeo Rodriguez and Wayne Swanson for preparation of
figures; and Carol Harville and Saida Cardoza  for manuscript
preparation.
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